Conditions and Techniques for Mouse Embryonic Stem Cell Derivation and Culture

نویسنده

  • Kun-Hsiung Lee
چکیده

Stem cells, characterized by their ability for self-renewal and differentiation, have been derived from the embryo and from various postnatal animal sources. They are usually classified according to their developmental potential. Totipotency is defined as the ability of a single cell to replicate and produce all differentiated cells in an entire organism, including extraem‐ bryonic tissues that will develop and differentiate into the fetal placenta and fetal membranes [1,2]. In plants, spores are totipotent cells. In some cases, cells can de-differentiate and regain their totipotency. For instance, a plant cutting or callus can be utilized to grow an entire functional plant [3]. In mammals, only the zygote and early blastomeres are totipotent cells [4-7]. In other words, an individual cell is capable to generate a functionally normal animal with fertile ability [8-10]. Mouse embryonic stem (ES) cells, typically derived from inner cell masses (ICMs) or corresponding earlier blastomeres or later epiblasts (develop to embryo proper), are an example of pluripotent cells that can self-renew and generate all types of body cells in vivo and in vitro, but cannot generate the extraembryonic trophoblast lineage [11-14]. Under some particular conditions, an ES cell-derived mouse with germline transmission can be generated routinely [15-21]. Multipotent cells, such as hematopoietic stem cells, can give rise all cell types within a particular lineage. Spermatogonial stem cells are unipotent stem cells, as they can only form sperm [22].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Establishment, Culture and Freezing of Human and Mouse Embryonic Stem Cells: a Protocol Guide

Studies of the biology of human embryonic stem cells (hES cells) have developed rapidly over the past nine years since the first reports of their derivation. They clearly offer enormous potential, not only for regenerative medicine, but also for drug discovery and toxicology, human developmental biology and cancer research. Realizing these potentials a better understanding of the fundamental as...

متن کامل

Large-Scale Expansion of Human Embryonic and Induced Pluripotent Stem Cells for Cell Therapy Applications

Successful isolation, derivation and culturing of human pluripotent stem cells, including human embryonic stem cells (hESCs) and human induced pluripotent stem (hiPSCs) cells in laboratory scale has opened new horizones for cell therapy applications such as tissue engineering and regenerative medicine. However, most of the cell therapy protocols using these unique cells require large number of ...

متن کامل

Effects of Treatment with Bone Morphogenetic Protein 4 and Co-culture on Expression of Piwil2 Gene in Mouse Differentiated Embryonic Stem Cells

Background Specific growth factors and feeder layers seem to have important roles in in vitro embryonic stem cells (ESCs) differentiation. In this study,the effects of bone morphogenetic protein 4 (BMP4) and mouse embryonic fibroblasts (MEFs) co-culture system on germ cell differentiation from mouse ESCs were studied. MaterialsAndMethods Cell suspension was prepared from one-day-old embryoid bo...

متن کامل

Differentiation of Mouse Embryonic Stem Cells into Hematopoietic Cells

Purpose: Differentiation of Mouse embryonicstem cells into Hematopoietic cells. Materials and Methods: In this study, we used EB formation system for Hematopoietic differentiation of mouse embryonic stem cell (Royan B1) in suspension culture. EBs cultured in medium with Hematopoietic inducer cytokines (SCF, TPO, GMCSF, IL3, Flt3 and EPO) .presence of hematopoietic differentiated cell assessed ...

متن کامل

The Effect of Cardio Gel and Matrigel on the Ultrastructure of Cardiomyocytes Derived From Mouse Embryonic Stem Cells

Purpose: To investigate the effect of cardiogel and matrigel on the ultrastructure of embryonic stem cell-derived cardiomyocytes. ECM: Extracellular Matrix derived from cardiac fibroblasts (cardiogel), commercial extracellular matrix (matrigel) and control group (without ECM) were cultured for up to 21 days. Ultrastructural properties of cardiomyocytes were evaluated by transmitting electron mi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013